

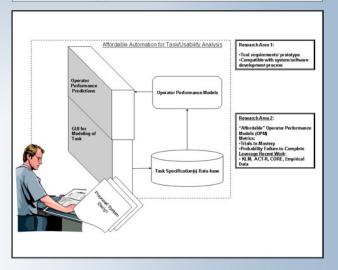
AUTOMATION-INTERFACE DESIGN TOOLS DEVELOPMENT:

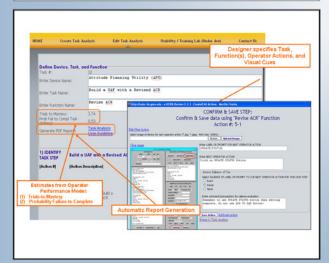
Accelerating Space Exploration with Task Analysis Tools
Lance Sherry (Ph.D.), Maricel Medina (M.Sc.) Michael Feary (Ph.D.)

George Mason University & NASA - Ames Research Center

Context

- Mars & Lunar Space Exploration missions require significant increases in automation functionality to support autonomous operation
 - Significant increase in Infrequent and Safety/time-critical tasks
 - · May not be trained recently
- Current methods cannot meet demand for HCI analysis
 - 1. Subject Testing cost prohibitive, late in life-cycle
 - Inspections, Walkthroughs earlier in life-cycle, but poor inter-rater reliability



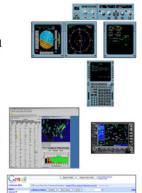

Problem Statement

- •Conduct foundational research to facilitate the development of "affordable" automation for the conduct of HCI across the contractor supply-chain
- •Requirements for HCI automation:
- Wide-spread distribution of affordable tool
- Compatible with System/Software Development Process
- Exhibit satisfactory inter-rater reliability

Research Approach

Prototype Task Analysis Tool

Results


- Domain: MOD-ISS-ADCO
- <u>Task</u>: Modify ACR in UAF
- <u>Device</u>: Attitude Planning Utility (APU)
- # Actions: 11
 - Exact Visual Cues 5
 - Partial Visual Cues 4
 - No Visual
 Cues/Memorization 2
- Predicted Operator Performance:
 - Trails-to-Mastery: 4
 - Probability Failure-to-Complete: 0.53

Conclusions & Future Work

- Requirements for automation have been established
 - Prototype has been field tested
- Requirements for Operator Performance Models have been established
- Future Work
 - Configure and calibrate Operator Performance Models
 - automate salience assessment process to improve inter-rater reliability

